Code: 20BS1304

II B.Tech - I Semester – Regular / Supplementary Examinations DECEMBER 2022

APPLIED MECHANICS (CIVIL ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

		BL	СО	Max.			
				Marks			
	UNIT-I						
1	Find the resultant and its direction of the given force system as shown in the Figure.						
	12N 10N 12N 15N 8N	L3	CO1	14 M			
	OR						
2	Classify the force system. State and derive the parallelogram's law of forces.	L2	CO1	14 M			
_	UNIT-II						
3	State and prove Lami's theorem.	L2	CO2	14 M			
	OR						

4	A ball of weight Q=53.4 N rests in a right angled trough, as shown in figure. Determine the forces exerted on the sides of the trough at D and E if all surfaces are perfectly smooth.	L3	CO2	14 M	
	UNIT-III				
5	Determine the forces in all members of a cantilever truss as shown in figure.	L3	CO3	14 M	
	OR				
6	A 800 N man starts climbing a ladder that placed against a wall as shown in given figure. Neglecting the weight of the ladder, determine how far up the ladder the man can climb before the ladder starts slipping. Assume coefficient of static friction between the surfaces as 0.25.	L3	CO3	14 M	

	8 m			
	UNIT-IV			
7	Find the centroid of the shaded portion about X			
	and Y axis for the figure below. All dimensions			
	are in mm.			
	50	L3	CO4	14 M
	OR			
8	Derive the expression for centroid about x- and	1.2	CO 4	1 / 1 / 1
	y-axes for a quarter circle of radius 'R'.	L3	CO4	14 M
		•	•	
UNIT-V				
9	A particle starts moving from origin along a			
	straight path with an initial velocity of 20 m/s.			
	The particle experiences a constant acceleration			
	of -2 m/s^2 .	L3	CO5	14 M
	(i) Determine velocity and position of particle at			
	6 seconds.			
	(ii) How long does the particle move in the same			

	direction? Find its position at that time instant. (iii) What is the time required for the particle to come back to origin? Find its velocity at that				
	time instant.				
	OR				
10	A projectile is fired with an initial velocity of				
	250m/s at a target located at a horizontal				
	distance of 4km and vertical distance of 700 m	L3	CO5	14 M	
	above the gun. Determine the value of firing				
	angle to hit the target. Neglect air resistance.				